Monatshefte für Chemie Chemical Monthly © Springer-Verlag 1993 Printed in Austria

Ein neues Metagermanat: RbK[GeO₃]oligomere (Rb₂GeO₃) oder polymere (K₂GeO₃) Anionen [1]?

J. Hofmann und R. Hoppe*

Institut für Anorganische und Analytische Chemie, Universität Gießen, D-W-6300 Gießen, Bundesrepublik Deutschland

A new Metagermanate: RbK[GeO₃]-Oligomeric (Rb₂[GeO₃]) or Polymeric (K₂[GeO₃]) Anions [1]?

Summary. By heating a well ground mixture of the binary oxides $RbO_{0.59}$, $KO_{0.55}$ and $GeO_2[Rb:K:Ge = 3.1:2.8:2;$ Ni-tube; 550 °C (27d) and 450 °C (22d)] colourless single crystals of $Rb_2K_2[(GeO_3)_2]$ were obtained for the first time: space group Pnma with a = 1322.51(14) pm, b = 557.25(5) pm, c = 1155.09(5) pm. The structure was determined by four-circle diffractometer data [Mo-K_ā, 1311 from 1362 $I_0(hkl)$, R = 4.0%, $R_w = 2.6\%$]. The Madelung Part of Lattice Energy, MAPLE, and the Effective Coordination Numbers, ECoN, the latter via Mean Fictive Ionic Radii, MEFIR, have been calculated.

Keywords. Alkali metal metagermanate; Crystal structure; MAPLE calculations.

Einleitung

Der Unterschied im Aufbau von Cs₂O mit Schichtstruktur [4] und Rb₂O sowie K₂O mit CaF₂-Typ deutet nur gewissermaßen "Zart" eine überraschende Mannigfaltigkeit von Ähnlichkeiten und Unterschieden bei polynären Oxiden $A_x M_y O_z$ für A = Li-Cs bei gleichem M und x, y und z an:

- 1. So ist bei den Oxocupraten(I) ACuO für A = Li-Rb gemäß $A_4[M_4O_4]$ [5–10] ein oligomeres (exakt planares) Anion strukturbestimmend, während sich CsCuO [11, 12] durch Zickzack-Ketten [CuO_{2/2}] auszeichnet. Diese entsprechen dem Motiv von HgO.
- Genau umgekehrt liegen bei K₂[ZnO_{4/2}] SiS₂-analoge Ketten vor [12], während die "größeren" Ionen in Rb₂[ZnO₂] und Cs₂[ZnO₂] [13] tetramere Anionen, gewissermaßen Ketten-Bruchstücke gemäß A₈[OZnO₂ZnO₂ZnO₂ZnO₂ZnO], erzwingen.
- Bei den entsprechenden Oxogallaten A₃GaO₃ weiß man nur für Cs₆[Ga₂O₆] Sicheres über die Konstitution. Hier liegen Dimere vor, gemäß Cs₆[O₂GaO₂-GaO₂] Tetraeder-Doppel des Al₂Cl₆-Motivs.

^{*} Herrn Professor Dr. J. Zemann zum 70. Geburtstag in Dankbarkeit gewidmet.

- Rb₂[GeO₃] [1] ist gemäß Rb₆[Ge₃O₉] ein Cyclotrigermanat und unterscheidet sich daher grundsätzlich von K₂[GeO₃] [2, 3] mit Zweier-Einfachkette.
- Nun wissen wir aus Voruntersuchungen an Pulverproben, daß RbKZnO₂ [15] zum K₂[ZnO_{4/2}]-Typ gehört; somit liegt der Bruch zwischen K₂ZnO₂ [13] und Rb₂ZnO₂ [14] in Oxiden Rb_{2-x}K_x[ZnO₂] zwischen 0<x<1.

Damit stand das Thema der vorliegenden Untersuchung fest; die Frage lautete: Gehört noch unbekanntes RbKGeO₃ zu den Cyclotrigermanaten wie Rb₂GeO₃ = Rb₆[(GeO₃)₃] oder, in gewisser Analogie zu den Verhältnissen bei den Oxozinkaten mit A = K-Cs, zu den Vertretern mit Zweier-Einfach-Ketten vom K₂GeO₃-Typ?

Experimenteller Teil

Ausgangsverbindungen

RbO_{0.59} und KO_{0.55} wurden durch kontrollierte Oxidation der Metalle dargestellt [16]. Rb wurde durch Reduktion von RbCl (Fa. Merck, gekörnt, p.a.) mit Ca (Fa. Merck, gekörnt, 98%) nach

Tabelle 1. Rb₂K₂[(GeO₃)₂]; kristallographische und analytische Daten

Kristallsystem	orthorhombisch
Raumgruppe	Pnma (Nr. 62 I.T.)
Gitterkonstanten (in pm)	a = 1322.51(14)
(Diffraktometerdaten)	b = 557.25(5)
	c = 1155.09(5)
Kristallform, -farbe	unregelmäßig, farblos
Dichte (röntgenographisch in g/cm ³)	3.82
Zahl der Formeleinheiten	4
Molvolumen (röntgenographisch in cm ³)	128.2
(Σ der binären Oxide in cm ³)	134.8
F(000)	896
Linearer Absorptionskoeffizient (für Mo- $K_{\bar{a}}$ in cm ⁻¹)	115.6
Diffraktometer	Vierkreis, Siemens AED 2
Strahlung, Monochromator	Mo- $K_{\bar{a}}$, Graphit
Korrektur der Intensitäten	Absorption, Polarisations- und Lorentz-Faktor
Meßbereich	$3 \leq \theta \leq 30$
Abtastung	w-scan
Scanweite, Abtastgeschwindigkeit (in °/s)	variabel
Lösungsverfahren	Direkte Methoden, Differenz- Fourier-Synthese
Parameterverfeinerung	"anisotrope" Temperaturfaktoren "full-matrix least-squares"
Anzahl der gemessenen $I_0(hkl)$	5449
symmetrieunabhängigen I ₀ (hkl)	1311
nicht berücksichtigten $I_0(hkl)$	51, mit $F_0 \le 2.0\sigma(F_0)$
Anzahl der freien Parameter	75
R	4.0%
R _w	2.6%
W	$2.7252/\sigma^2 F$

530

41113										
Atom	Lage	x/a	y/b	z/c	<i>U</i> ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
$Ge(1)^{4+}$	4 <i>c</i>	572(0)	2500	2691(0)	158(3)	168(3)	134(3)	0	2(3)	0
$Ge(2)^{4+}$	4 <i>c</i>	2943(0)	2500	7532(1)	152(3)	175(3)	145(3)	0	14(2)	0
^a Rb(1) ⁺	4 <i>c</i>	2545(1)	2500	547(1)	256(4)	268(4)	239(4)	0	-41(2)	0
^a Rb(2) ⁺	4c	5625(1)	2500	9162(1)	273(4)	247(3)	260(3)	0	21(2)	0
^b K(1) ⁺	4 <i>c</i>	3242(1)	2500	3675(1)	213(5)	232(5)	238(5)	0	-20(4)	0
K(2) ⁺	4 <i>c</i>	9983(1)	2500	9023(1)	178(6)	268(6)	181(6)	0	0(4)	0
$O(1)^{2-}$	4 <i>c</i>	4655(3)	7500	6228(3)	269(22)	279(23)	152(19)	0	22(16)	0
$O(2)^{2}$	4 <i>c</i>	5470(3)	7500	8580(4)	204(21)	273(23)	224(20)	0	-68(16)	0
$O(3)^{2-}$	4c	2896(3)	2500	6054(3)	275(22)	293(23)	113(18)	0	-1(15)	0
O(4) ^{2 -}	8 <i>d</i>	3653(2)	13(6)	8105(3)	320(15)	272(16)	239(14)	3(13)	7(12)	113(13)
$O(5)^{2-}$	4 <i>c</i>	6805(3)	2500	6754(4)	136(18)	327(24)	255(22)	0	.63(16)	0

Tabelle 2. $Rb_2K_2[(GeO_3)_2]$; Lageparameter ($\cdot 10^4$) und Koeffizienten der "anisotropen" Temperaturfaktoren (in pm²), (in Klammern: Standardabweichung in Einheiten der letzten Stelle). Der "anisotrope" Temperaturfaktor hat die Form:

 $T_{min} = \exp -2\pi^2 \left[(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}l^2c^{*2} + 2U_{23}klb^*c^* + 2U_{13}hla^*c^* + 2U_{12}hka^*b^*) \right]$

^a Lage ist zu etwa 12% mit K⁺ besetzt ^b Lage ist zu etwa 9% mit Rb⁺ besetzt $\left\{ (Rb_{0.88}K_{0.12})_2(K_{0.91}Rb_{0.09})_2 [(GeO_3)_2] \right\}$

zweimaliger Destillation erhalten [17]. K (Fa. Merck) wurde ebenfalls durch Destillation gereinigt. GeO₂ wurde käuflich erworben (Fluka AG, 99.99%).

Darstellung der Einkristalle

Präparate mit grob kristallinem $Rb_2K_2[(GeO_3)_2]$ wurden durch Tempern inniger Gemenge der Ausgangsverbindungen RbO_{0.59}, KO_{0.55} und GeO₂[Rb:K:Ge = 3.1:2.8:2 (vor dem Verreiben)] in verschlossenen Ni-Bömbchen (diese in Quarzglas eingeschmolzen) erhalten. Die Proben wurden wie folgt getempert:

$$200 \degree C (4d) \rightarrow (12d) \rightarrow 550 \degree C (27d) \rightarrow (1d) \rightarrow 450 \degree C (22d) \rightarrow (1d) \rightarrow Raumtemperatur$$

Die erhaltenen Präparate waren durchweg grob kristallin. Neben Kristallen von $Rb_2K_2[(GeO_3)_2]$ wurden auch solche von Rb₂[GeO₃] und K₂[GeO₃] [18, 19] gefunden.

Die prächtigen, farblosen Kristalle von $Rb_2K_3[(GeO_3)_2]$ sind gegen Luftfeuchtigkeit äußerst empfindlich; sie zersetzen sich innerhalb weniger Sekunden.

Röntgenographische Untersuchungen

Mit Hilfe eines Polarisationsmikroskops wurden geeignet erscheinende Einkristalle unter mit Na-Draht getrocknetem Paraffin ausgesucht. Nach Vorauswahl durch Schwenkaufnahmen wurde der "am besten" geeignete Einkristall zur weiteren röntgenographischen Untersuchung herangezogen:

Drehkristall-Aufnahme um [010] sowie Weissenberg- (h0l), (h1l) und Präzessions-Aufnahmen (0kl), (1kl), (hk0) und (hk1), Mo- $K_{\bar{a}}$ -Strahlung. Die den Filmen zu entnehmenden Auslöschungsbendingungen verweisen auf die Raumgruppe Pnma (Nr. 62), die auch durch die anschließende Strukturaufklärung [20] belegt wird. Weitere Daten siehe Tabelle 1 und 2.

Ergebnisse und Diskussion

Beschreibung der Kristallstruktur

Die Strukturbestimmung ergibt die in Tabelle 3 angegebenen Abstände und Motive der gegenseitigen Zuordnung. Des weiteren sind die naiv abgezählten Koordinationszahlen (C.N.), die Mittleren Fiktiven Ionenradien (MEFIR-Werte) und die Effektiven Koordinationszahlen (ECoN) angegeben [21, 22].

Dem Aufbau des neuen Metagermanats liegt strukturell das Motiv $Rb_2K_2[(GeO_3)_2]$ mit Z = 4 zugrunde. Strukturbestimmend sind die längs [010] zu Zweier-Einfach-Ketten verbundenen Tetraeder [GeO₄]⁴⁻. Diese Ketten sind aus zwei kristallographisch unterschiedlichen Tetraedern, diese alternierend angeordnet, aufgebaut.

Zur Primärstruktur

Beide Sorten von Ge^{4+} sind verzerrt tetraedrisch von vier O^{2-} umgeben mit Abständen zwischen 180 pm für $O(4)^{2-}$ (Brückensauerstoff) und 171 bzw. 172 pm für die übrigen O^{2-} zu dem zugehörigen Ge^{4+} .

Das Koordinationspolyeder um $Rb(1)^+$ entspricht einer stark verzerrten hexagonalen Pyramide, unter deren Basisfläche zwei weitere O^{2^-} liegen. Das Abstandsspektrum $Rb(1)^+-O^{2^-}$ liegt zwischen 281 und 363 pm. Das C.P. ist also deutlich verzerrt.

 $Rb(2)^+$ wird ebenfalls von neun O^{2-} in erster Koordinationssphäre umgeben.

	01	O2	O3	O4	O5	C.N.	ECoN ^a	MEFIR ^a
Ge1	1/1	1/1		2/1	_	4	3.9	35.1
	172	172		180				
Ge2	_	-	1/1	2/1	1/1	4	3.9	34.8
			171	180	172			
Rb1	1/1	1/1	2/2	[2/1] + [2/1]	1/1	5 + [4]	6.0	152.6
	301	281	291	[347] [358]	283			
Rb2	_	2/2 + 1/1	1/1	2/1 + [2/1]	1/1	7+[2]	7.3	162.6
		287 + 298	301	320 [358]	319			
K1	1/1	1/1	1/1	2/1	2/2	7	6.7	146.3
	278	311	279	295	283			
K2	1/1 + 2/2		1/1	[2/1]	1/1	5+[2]	5.1	129.7
	259 284		276	[333]	257			
C.N.	6	6	6	4+[4]	6			
ECoN ^b	5.7	5.6	5.9	6.2	5.8			
MEFIR^b	140.1	136.7	139.2	150.3	138.0			

Tabelle 3. $Rb_2K_2[(GeO_3)_2]$; Motive der gegenseitigen Zuordung, naiv abgezählte Koordinationszahlen (C.N.), Effektive Koordinationszahlen (ECoN) sowie MEFIR-Werte (Abstände in pm)

^a Nur O²⁻ als Nachbarn berücksichtigt

^b Nur Kationen als Nachbarn berücksichtigt

Hier gleicht das Koordinationspolyeder jedoch einer verzerrten pentagonalen Pyramide, unter deren Basisfläche drei weitere O^{2^-} sitzen. Auch hier sind die Abstände $Rb(2)^+-O^{2^-}$ recht unterschiedlich (287 bis 358 pm).

Die Koordinationspolyeder beider K⁺ lassen sich als verzerrte pentagonale Bipyramiden bezeichnen mit Abständen K⁺-O²⁻ zwischen 278 und 311 pm für K(1)⁺ und 257 und 333 pm für K(2)⁺.

Zur Sekundär- und Tertiärstruktur

Charakteristisch für die Struktur sind Zweier-Einfach-Ketten der Zusammensetzung ${}^{1}_{\infty}$ {O(4)_{1/2}Ge(1)O(1)_{1/1}O(2)_{1/1}O(4)_{2/2}Ge(2)O(3)_{1/1}O(5)_{1/1}O(4)_{1/2}} längs [010] (vgl. Abb. 1). Diese werden über Rb⁺ und K⁺ miteinander verknüpft. Die Anordnung dieser Zweier-Einfach-Ketten entspricht dem Motiv einer "dichtesten Rundstab-Packung". Innerhalb einer Kette zeigen die "Spitzen" aller Tetraeder in eine Richtung, wenn man festlegt, daß diese durch O(1)²⁻ für Ge(1)⁴⁺ und durch O(3)²⁻ für Ge(2)⁴⁺ gebildet werden. Die Flächennormalen der beiden Basisflächen bilden einen Winkel von etwa 16° zueinander (vgl. Abb. 1).

Die Struktur insgesamt kann auch aus zwei "Schichten" (in y = 1/4 und y = 3/4) aufgebaut angesehen werden. Der Brückensauerstoff O(4)²⁻ liegt jedoch in y =0.0013 bzw. 0.9987 sowie 0.4987 bzw. 0.5013 und verknüpft diese. Innerhalb dieser "Schichten" ${}^{2}_{\infty} \{ [Rb(1)Rb(2)K(1)K(2)Ge(1)Ge(2)O(1)O(2)O(3)O(5)]_{2} \}$ weisen alle O²⁻ die Koordinationzahl 4 (bei einer Gesamtkoordinationszahl von 6) auf. Alle Alkalimetallionen sind innerhalb jeder dieser Schichten von drei O²⁻ umgeben, während Ge⁴⁺ nur zwei O²⁻ als nächste Nachbarn aufweist, denn die "Brücken" O(4)²⁻ verknüpfen senkrecht zur Kette ${}^{2}_{\infty} \{ (GeO_3) \}.$

Abbildung 2 zeigt eine schematische Darstellung der Schichtabfolge entlang [010].

Die Verknüpfung zur Tertiärstruktur ist recht komplex; auf deren Beschreibung wird hier verzichtet.

Der Madelunganteil der Gitterenergie, MAPLE

Für $Rb_2K_2[(GeO_3)_2]$ wurde MAPLE [23–25] berechnet und mit der Summe der MAPLE-Werte der binären Oxide verglichen (Tabelle 4). Die beiden Summen

Abb. 1. Rb₂K₂[(GeO₃)₂]; Verknüpfung der GeO₄⁴⁻-Tetraeder entlang [010]

	Faktor	MAPLE quat.	MAPLE bin.	Δ^{e}	$\Sigma\Delta^e$
$Ge(1)^{4+}$	1	2018.7	2063.0ª	-44.3	-44.3
$Ge(2)^{4+}$	1	2016.8	2063.0ª	-46.2	-46.2
Rb(1) ⁺	1	113.3	100.2 ^ь	13.2	13.2
Rb(2)*	1	109.9	100.2 ^b	9.7	9.7
K(1) ⁺	1	119.0	104.9°	14.1	14.1
K(2) ⁺	1	128.0	104.9°	23.1	23.1
$O(1)^{2}$	1	535.6	558.9 ^d	-23.3	-23.3
$O(2)^{2}$	1	531.5	558.9 ^d	-27.3	-27.3
$O(3)^{2-}$	1	543.7	558.9 ^d	-15.2	-15.2
$O(4)^{2}$	2	661.1	558.9 ^d	102.2	202.4
$O(5)^{2}$	1	532.0	558.9 ^d	-26.9	-26.9
Σ		7970.7	7889.6		81.1 = 1.0%

Tabelle 4. Rb₂K₂[(GeO₃)₂]; Madelunganteil der Gitterenergie, MAPLE (in kcal/mol)

^a aus GeO₂ ^b aus Rb₂O

° aus K₂O

^d Mittelwert aus: 4·MAPLE (O²⁻) aus^a

1. MAPLE (O²⁻) aus^b

1 · MAPLE (O²⁻) aus^c

^e quaternär-binär

	01	O2	O3	O4	O5	$\Sigma Q_{Kationen}^{a}$	Vb
Ge1	1.147	1.265		1.713		4.02	3.91
	-1.147	-1.140		-0.857			
Ge2			1.156	1.694	1.126	3.98	3.94
			-1.167	-0.847	-1.139		
Rb1	0.141	0.219	0.356	0.078	0.205	1.00	1.05
	-0.141	-0.214	-0.359	-0.039	-0.207		
Rb2		0.536	0.143	0.235	0.095	1.01	0.96
		-0.524	-0.144	-0.118	-0.096		
K1	0.176	0.080	0.080	0.250	0.318	1.00	0.94
	-0.176	-0.078	0.078	-0.125	-0.321		
K2	0.537			0.030	0.257	1.00	1.16
	-0.537			-0.015	-0.260		
ΣQ _{Anionen} ^a	-2.00	-1.96	-2.02	-2.00	-2.02	$\sigma Q^{c} = 0.15\%$	$\sigma V^{c} = 0.88^{\circ}/_{o}$

Tabelle 5. $Rb_2K_2[(GeO_3)_2]$; Ladungsverteilung nach Hoppe [26] (ΣQ) und nach dem "bond lengthbond strength"-Konzept [27] (V)

^a Charge Distribution in Solids-Konzept [26]

^b "Bond Length-Bond Strength"-Konzept [27]

° Standardabweichung der Gasamtladung in Bezug auf die erwarteten Oxidationsstufen

weichen um 81 kcal mol⁻¹ $\approx 1.0\%$ voneinander ab. Diese Abweichung ist noch zufriedenstellend. Bei der Betrachtung der Einzeldifferenzen ist bis auf den Brückensauerstoff keine große Abweichung festzustellen. Diese hier auftretende große Differenz von 102 kcal mol⁻¹ für den Beitrag des Brückensauerstoffs gegenüber den anderen O²⁻ beruht auf der Nachbarschaft zu zwei Ge⁴⁺ und ist somit plausibel.

Berechnung der Ladungsverteilung, CHARDI

Für $Rb_2K_2[(GeO_3)_2]$ wurde die Verteilung der Ladung nach unserem neuen Konzept CHARDI [26] und nach dem "bond length-bond strength"-Konzept [27] berechnet (Tabelle 5). Die Berechnung nach unserem Konzept liefert hier im Gegensatz zur Berechnung nach Brown und Altermatt Ergebnisse, die den Erwartungswerten besser entsprechen.

Schlußbemerkung

Wie bei den Bruchstellen zwischen $Rb_2ZnO_2 \triangleq Rb_8[Zn_4O_8]$ mit oligomerem Anion und $K_2ZnO_2 \triangleq K_2[ZnO_{4/2}]$ mit "aufgefüllter" SiS₂-Struktur, wo RbK[ZnO₂] strukturell zum SiS_{4/2}-Motiv anschließt, gehört auch hier RbK[GeO₃] nicht zum Rb₆[(GeO₃)₃] mit oligomerem Anion, sondern zu $K_2GeO_3 \triangleq K_4 \stackrel{2}{_{\infty}}[(GeO_3)_2]$.

Was mag bei $CsKGeO_3$ vorliegen? "Noch" das Motiv K_2GeO_3 ? Oder das Tricyclo-Motiv von Rb_2GeO_3 ? Versuche zur Züchtung solcher Einkristalle sind im Gange.

Dank

Die Sammlung der Vierkreisdiffraktometerdaten wurde von Herrn Dr. M. Serafin vorgenommen, die notwendigen Rechnungen am Hochschulrechenzentrum der Justus-Liebig-Universität Gießen durchgeführt. Der Deutschen Forschungsgemeinschaft und dem Fond der Chemischen Industrie danken wir für die Unterstützung mit Sachmitteln.

Literatur

- [1] Hofmann J. (1992) Dissertation, Univ. Gießen
- [2] Werthmann R., Hoppe R. (1985) Z. Anorg. Allg. Chem. 525: 86
- [3] Halwax E., Völlenkle H. (1984) Z. Kristallogr. 169: 63
- [4] Tsai K.-R., Harris P. M., Lasettre E. N. (1956) J. Phys. Chem. 60: 338
- [5] Migeon H. N., Zanne M., Gleitzer C., Courtios A. (1976) J. Solid State Chem. 16: 325
- [6] Hoppe R., Klassen H. (1974) Diplomarbeit H. Klassen, Universität Gießen
- [7] Hestermann K., Hoppe R. (1968) Z. Anorg. Allg. Chem. 360: 113
- [8] Hoppe R., Hestermann K., Schenk F. (1969) Z. Anorg. Allg. Chem. 369: 275
- [9] Klassen H., Hoppe R. (1982) Z. Anorg. Allg. Chem. 485: 101
- [10] Losert W., Hoppe R. (1984) Dissertation W. Losert, Universität Gießen
- [11] Klassen H., Hoppe R. (1983) Z. Anorg. Allg. Chem. 497: 70
- [12] Fischer D., Carl W., Glaum H., Hoppe R. (1990) Z. Anorg. Allg. Chem. 585: 75
- [13] Vielhaber E., Hoppe R. (1968) Z. Anorg. Allg. Chem. 360: 7
- [14] Wambach K.-R., Hoppe R. (1978) Z. Anorg. Allg. Chem. 444: 30
- [15] Baier R., Hoppe R. (1987) Dissertation R. Baier, Universität Gießen

- [16] Helms A., Klemm W. (1939) Z. Anorg. Allg. Chem. 242: 33
- [17] Hackspill L. (1906) C. R. Acad. Sci. 141: 106
- [18] Halwax E., Völlenkle H. (1984) Z. Kristallogr. 169: 63
- [19] Werthmann R., Hoppe, R. (1985) Z. Anorg. Allg. Chem. 525: 86
- [20] Sheldrick G. M. (1976) SHELX-76 Programmsystem, Cambridge; Sheldrick G. M. (1986) SHELX-86 Programmsystem, Cambridge
- [21] Hoppe R. (1980) Angew. Chem. 92: 106; (1980) Angew. Chem. Int. Ed. Engl. 3: 110
- [22] Meyer G., Hoppe R. (1976) Z. Anorg. Allg. Chem. 420: 40; Hoppe R. (1979) Z. Kristallogr. 150: 23
- [23] Hoppe R. (1966) Angew. Chem. 78: 52; (1966) Angew. Chem. Int. Ed. Engl. 5: 95
- [24] Hoppe R. (1970) Angew. Chem. 82: 7; (1970) Angew. Chem. Int. Ed. Engl. 9: 25
- [25] Hübenthal R. Pascal Programm MAPLE 3.10, unveröffentlicht
- [26] Hoppe R., Voigt S., Glaum H., Kissel J., Müller H. P., Bernet K. (1989) J. Less-Common Met. 156: 105
- [27] Brown I., Altermatt D. (1985) Acta Crystallogr. B 41: 144

Eingegangen 29. September 1992. Angenommen 6. Oktober 1992

Korrespondenz: Prof. emer. Dr. Dr. h.c. mult. Rudolf Hoppe, Institut für Anorganische und Analytische Chemie der Universität, Heinrich-Buff-Ring 58, W-6300 Gießen, Bundesrepublik Deutschland.